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Threads

Support concurrency/parallelism within an application

e.g. a web server that’

Key idea:

— separate the concept of a process (address space, OS
resources)

— ... from that of a minimal “thread of control” (execution state:
stack, stack pointer, program counter, registers)

Threads are more lightweight, so much faster to

create and switch between than processes
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Implementing Threads

Two approaches to implementing threads:
« Kernel threads
» User-level threads

Today:
 quick review of kernel threads
 more about user-level threads

« scheduler activations:
adding kernel support for better user-level threads



Kernel threads

OS now manages threads and processes / address spaces
— all thread operations are implemented in the kernel

— OS schedules all of the threads in a system, just like processes
Kernel threads are cheaper than processes

— less state to manage: just the processor context (PC, SP, registers)
Switching between kernel threads

— trap into kernel

— kernel saves running thread’s processor context in TCB

— kernel picks new thread to run

— kernel loads new thread’s registers, jumps to its saved PC

Call this 1:1 scheduling
— 1 app thread per 1 kernel scheduled entity
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User-level threads

Can implement threading entirely in user space
— run many user-level threads in one kernel thread
— call this N:1 threading

Keep separate stack & processor context for each
thread, in user space

User-level thread lib schedules and switches threads

Switching between threads entails:
— library saves running thread’s processor context
— library picks a new thread to run
— library restores new thread’s context, jumps to saved PC

Pretty much same as before, but kernel not involved!
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User-level threads: what the kernel sees
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User-level vs kernel threads

 User level threads are faster

— Faster to switch between threads
* Round-trip to kernel: about 500 ns
« Switching in user space: closer to 5 ns (like a function call)

— Faster to create and destroy threads

« Some problems with user-level threads

— Can we take advantage of more than one processor?
— What if one of the threads does 1/O, and blocks?

« Basic problem: lack of information in each scheduler
— Kernel doesn’t know about user-level threads
— User-level scheduler doesn’'t know about other processes
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User-level scheduling, multiprocessor style

 |f all user-level threads run in one kernel thread,
only one can run at a time!

« Most machines have more than 1 CPU core now...

* Solution: use more than one kernel thread!
1 kernel thread per processor (N:M threading)

 User-level scheduler in each kernel thread chooses
which user-level thread to run

 Kernel schedules the kernel-level threads, but is still
oblivious to what's going on at user level
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Multiple kernel threads “powering”
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Same problem with
other blocking ops
(e.g. page faults)
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Scheduler Activations

Support for user-level threads without these problems

Basic idea:

— let the kernel scheduler and the user-level scheduler
coordinate with each other

— involves communication from user-level to OS and back

From UW: [Anderson, Bershad, ‘92]
Lots of impact on practical systems (more info later)
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Scheduler Activations: 2-way communication

OS and user-level schedulers give each other hints

User-level scheduler tells the kernel what it needs
— request more CPUs (might not get them!) or release them

Kernel calls user-level scheduler to notify it of events

— more/fewer CPUs available to process
— thread blocked on /O, or unblocked when 1/O finished

Kernel to user-space communication: upcall
— A bit unusual: usually user-space makes syscalls to kernel!
— But this is also how signals work, and like an interrupt
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Scheduler Activations

« “Scheduler activations” replace kernel threads

A scheduler activation is like a kernel thread

— has a separate stack and processor context
— can be scheduled on a CPU

e ...but different:

— If the kernel interrupts an activation, it doesn'’t restart it
where it left off (like a thread)

— Instead, it restarts execution in the user-level scheduler

— User-level scheduler can then decide which thread it wants
to run on that CPU
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Blocking 1/O
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Performance

 Is all that really faster than kernel-level threads?
— Not really — lots of upcalls, not especially cheap

 But what we just saw were the uncommon cases!

 When threads aren’t blocking on 1/O,
it's just user-level thread management!
— orders of magnitude faster than kernel-level threads
— and now we have an answer for the blocking 1/O problem
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The state of threading today

« Scheduler activations pretty widely used:

— Various Unixes: FreeBSD, NetBSD, Solaris, Digital UNIX
(some now defunct)

— Windows 7 User-Mode Scheduling
— Recent research on multicore Oses

« Trend back to kernel-scheduled threads
— Linux, FreeBSD
— performance getting better, and less complex

» User-level threading still popular in massively-parallel
applications
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You really want multiple threads per address space

Kernel threads are much more efficient than
processes, but they're still not cheap
— all operations require a kernel call and parameter validation

User-level threads are:
— really fast/cheap

— great for common-case operations
 creation, synchronization, destruction

— can suffer in uncommon cases due to kernel obliviousness
 |/O and other blocking operations

Scheduler activations are an answer
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What if a thread tries to do I/0O?

Remember: /O operations are blocking

The kernel thread “powering” it is lost for the duration
of the 1/O operation!

— The kernel thread blocks in the OS, as always

— Can’t run a different user-level thread

Same problem w/ other blocking ops (e.g. page faults)

Again: kernel doesn’t know there are user threads, so
doesn’t know there’s something else it could run
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