CSE 451: Operating Systems
Winter 2026

Module 6

User-Level Threads &
Scheduler Activations

Gary Kimura

Threads

Support concurrency/parallelism within an application

e.g. a web server that’

Key idea:

— separate the concept of a process (address space, OS
resources)

— ... from that of a minimal “thread of control” (execution state:
stack, stack pointer, program counter, registers)

Threads are more lightweight, so much faster to

create and switch between than processes

% <«—— thread

Key

address
space

3

thread

The design space

MS/DOS

one thread per process
one process

I3
% % UNIXes

one thread per process
many processes

s 3
Java % %

many threads per process
one process

$|11%%
% % % Mach, NT,

Linux, ...

nany threads per process
many processes

Implementing Threads

Two approaches to implementing threads:
« Kernel threads
» User-level threads

Today:
 quick review of kernel threads
 more about user-level threads

« scheduler activations:
adding kernel support for better user-level threads

Kernel threads

OS now manages threads and processes / address spaces
— all thread operations are implemented in the kernel

— OS schedules all of the threads in a system, just like processes
Kernel threads are cheaper than processes

— less state to manage: just the processor context (PC, SP, registers)
Switching between kernel threads

— trap into kernel

— kernel saves running thread’s processor context in TCB

— kernel picks new thread to run

— kernel loads new thread’s registers, jumps to its saved PC

Call this 1:1 scheduling
— 1 app thread per 1 kernel scheduled entity

address
space

3

thread

Kernel threads

??

/

/// /

{|

os kernel

CPU \

(thread create, destroy,
signal, wait, etc.)

Mach, NT,
Linux, ...

All thread operations
(creating, destroying,

waiting) go through the
kernel

User-level threads

Can implement threading entirely in user space
— run many user-level threads in one kernel thread
— call this N:1 threading

Keep separate stack & processor context for each
thread, in user space

User-level thread lib schedules and switches threads

Switching between threads entails:
— library saves running thread’s processor context
— library picks a new thread to run
— library restores new thread’s context, jumps to saved PC

Pretty much same as before, but kernel not involved!

User-level threads

user-level
thread library

(thread create, destroy,
signal, wait, etc.)

53 e

address
space [i

All thread operations

3 (creating, destroying,
% l os kernel l waiting) are handled by
thread CPU the thread library

(not the kernel)

User-level threads: what the kernel sees

address
space

3

thread

l

'Y
os kernel

l

Kernel is oblivious to
user-level threads!

CPU

User-level vs kernel threads

 User level threads are faster

— Faster to switch between threads
* Round-trip to kernel: about 500 ns
« Switching in user space: closer to 5 ns (like a function call)

— Faster to create and destroy threads

« Some problems with user-level threads

— Can we take advantage of more than one processor?
— What if one of the threads does 1/O, and blocks?

« Basic problem: lack of information in each scheduler
— Kernel doesn’t know about user-level threads
— User-level scheduler doesn’'t know about other processes

10

User-level scheduling, multiprocessor style

 |f all user-level threads run in one kernel thread,
only one can run at a time!

« Most machines have more than 1 CPU core now...

* Solution: use more than one kernel thread!
1 kernel thread per processor (N:M threading)

 User-level scheduler in each kernel thread chooses
which user-level thread to run

 Kernel schedules the kernel-level threads, but is still
oblivious to what's going on at user level

11

Multiple kernel threads “powering”

each address space
user-level

(thread create, destroy,
signal, wait, etc.)

address
space
¢ kernel threads
% oS kernel
thread CPU

(kernel thread create, destroy,
signal, wait, etc.)

12

address
space

3

kernel thread

3

user-level
thread

What if a thread tries to do I/0O?

L

user-leve| thread library

e e

Js kernel

CPU

The kernel thread
“powering” it is lost
for the duration of the
I/0 operation!

Even if other user-level
threads are ready, can’t
run them!

Kernel doesn’t know
there’s anything else
ready to run

Same problem with
other blocking ops
(e.g. page faults)

13

Scheduler Activations

Support for user-level threads without these problems

Basic idea:

— let the kernel scheduler and the user-level scheduler
coordinate with each other

— involves communication from user-level to OS and back

From UW: [Anderson, Bershad, ‘92]
Lots of impact on practical systems (more info later)

14

Scheduler Activations: 2-way communication

OS and user-level schedulers give each other hints

User-level scheduler tells the kernel what it needs
— request more CPUs (might not get them!) or release them

Kernel calls user-level scheduler to notify it of events

— more/fewer CPUs available to process
— thread blocked on /O, or unblocked when 1/O finished

Kernel to user-space communication: upcall
— A bit unusual: usually user-space makes syscalls to kernel!
— But this is also how signals work, and like an interrupt

15

Scheduler Activations

« “Scheduler activations” replace kernel threads

A scheduler activation is like a kernel thread

— has a separate stack and processor context
— can be scheduled on a CPU

e ...but different:

— If the kernel interrupts an activation, it doesn'’t restart it
where it left off (like a thread)

— Instead, it restarts execution in the user-level scheduler

— User-level scheduler can then decide which thread it wants
to run on that CPU

16

address
space

3

sched acts
(kern threads)

3

thread

Starting a new process

[k

T

user-leviel thread liprary

o —0

i3

'/os kernel/

CPU

New thread starts
executing in thread lib

User-level sched picks
thread to run, starts it

Can reschedule a
different user-level
thread later

17

Blocking 1/O

 Thread blocked on |/O

 Kernel creates new

address % % % activation — starts in the
° thread lib, and picks a

space ? ?

new thread to run

user-leviel thread liprary

% 3 3 When |I/O finishes, old
— ? 3 thread doesn’t resume
sched acts
i d

(kern threads) 55 [ErE * Kernel interrupts
an activation, lets
% CPU the scheduler pick

what to run
thread

18

Performance

 Is all that really faster than kernel-level threads?
— Not really — lots of upcalls, not especially cheap

 But what we just saw were the uncommon cases!

 When threads aren’t blocking on 1/O,
it's just user-level thread management!
— orders of magnitude faster than kernel-level threads
— and now we have an answer for the blocking 1/O problem

19

The state of threading today

« Scheduler activations pretty widely used:

— Various Unixes: FreeBSD, NetBSD, Solaris, Digital UNIX
(some now defunct)

— Windows 7 User-Mode Scheduling
— Recent research on multicore Oses

« Trend back to kernel-scheduled threads
— Linux, FreeBSD
— performance getting better, and less complex

» User-level threading still popular in massively-parallel
applications

20

You really want multiple threads per address space

Kernel threads are much more efficient than
processes, but they're still not cheap
— all operations require a kernel call and parameter validation

User-level threads are:
— really fast/cheap

— great for common-case operations
 creation, synchronization, destruction

— can suffer in uncommon cases due to kernel obliviousness
 |/O and other blocking operations

Scheduler activations are an answer

21

What if a thread tries to do I/0O?

Remember: /O operations are blocking

The kernel thread “powering” it is lost for the duration
of the 1/O operation!

— The kernel thread blocks in the OS, as always

— Can’t run a different user-level thread

Same problem w/ other blocking ops (e.g. page faults)

Again: kernel doesn’t know there are user threads, so
doesn’t know there’s something else it could run

22

