
CSE 451: Operating Systems

Winter 2026

Module 6

User-Level Threads &

Scheduler Activations

Gary Kimura

1

2

Threads

• Support concurrency/parallelism within an application
e.g. a web server that’

• Key idea:
– separate the concept of a process (address space, OS

resources)

– … from that of a minimal “thread of control” (execution state:
stack, stack pointer, program counter, registers)

• Threads are more lightweight, so much faster to
create and switch between than processes

thread

3

The design space

address
space

thread

one thread per process
many processes

many threads per process
many processes

one thread per process
one process

many threads per process
one process

MS/DOS

Java

older
UNIXes

Mach, NT,
Linux, …

Key

Implementing Threads

Two approaches to implementing threads:

• Kernel threads

• User-level threads

Today:

• quick review of kernel threads

• more about user-level threads

• scheduler activations:
adding kernel support for better user-level threads

4

5

Kernel threads

• OS now manages threads and processes / address spaces
– all thread operations are implemented in the kernel

– OS schedules all of the threads in a system, just like processes

• Kernel threads are cheaper than processes
– less state to manage: just the processor context (PC, SP, registers)

• Switching between kernel threads
– trap into kernel

– kernel saves running thread’s processor context in TCB

– kernel picks new thread to run

– kernel loads new thread’s registers, jumps to its saved PC

• Call this 1:1 scheduling
– 1 app thread per 1 kernel scheduled entity

6

address
space

thread

Mach, NT,
Linux, …

os kernel

(thread create, destroy,
signal, wait, etc.)

CPU

Kernel threads

All thread operations
(creating, destroying,
waiting) go through the
kernel

User-level threads

• Can implement threading entirely in user space
– run many user-level threads in one kernel thread

– call this N:1 threading

• Keep separate stack & processor context for each
thread, in user space

• User-level thread lib schedules and switches threads

• Switching between threads entails:
– library saves running thread’s processor context

– library picks a new thread to run

– library restores new thread’s context, jumps to saved PC

• Pretty much same as before, but kernel not involved!

7

88

address
space

thread

os kernel

CPU

User-level threads
user-level

thread library

(thread create, destroy,
signal, wait, etc.)

All thread operations
(creating, destroying,
waiting) are handled by
the thread library
(not the kernel)

999

address
space

thread

os kernel

CPU

User-level threads: what the kernel sees

Kernel is oblivious to
user-level threads!

User-level vs kernel threads

• User level threads are faster
– Faster to switch between threads

• Round-trip to kernel: about 500 ns

• Switching in user space: closer to 5 ns (like a function call)

– Faster to create and destroy threads

• Some problems with user-level threads
– Can we take advantage of more than one processor?

– What if one of the threads does I/O, and blocks?

• Basic problem: lack of information in each scheduler
– Kernel doesn’t know about user-level threads

– User-level scheduler doesn’t know about other processes

10

User-level scheduling, multiprocessor style

• If all user-level threads run in one kernel thread,
only one can run at a time!

• Most machines have more than 1 CPU core now…

• Solution: use more than one kernel thread!
1 kernel thread per processor (N:M threading)

• User-level scheduler in each kernel thread chooses
which user-level thread to run

• Kernel schedules the kernel-level threads, but is still
oblivious to what's going on at user level

11

1212

address
space

thread

os kernel

user-level
thread library

(thread create, destroy,
signal, wait, etc.)

(kernel thread create, destroy,
signal, wait, etc.)

CPU

Multiple kernel threads “powering”
each address space

kernel threads

131313

address
space

user-level
thread

os kernel

user-level thread library

CPU

What if a thread tries to do I/O?

• The kernel thread
“powering” it is lost
for the duration of the
I/O operation!

• Even if other user-level
threads are ready, can’t
run them!

• Kernel doesn’t know
there’s anything else
ready to run

• Same problem with
other blocking ops
(e.g. page faults)

kernel thread
BLOCKED

Scheduler Activations

• Support for user-level threads without these problems

• Basic idea:
– let the kernel scheduler and the user-level scheduler

coordinate with each other

– involves communication from user-level to OS and back

• From UW: [Anderson, Bershad, ‘92]

• Lots of impact on practical systems (more info later)

14

Scheduler Activations: 2-way communication

• OS and user-level schedulers give each other hints

• User-level scheduler tells the kernel what it needs
– request more CPUs (might not get them!) or release them

• Kernel calls user-level scheduler to notify it of events
– more/fewer CPUs available to process

– thread blocked on I/O, or unblocked when I/O finished

• Kernel to user-space communication: upcall
– A bit unusual: usually user-space makes syscalls to kernel!

– But this is also how signals work, and like an interrupt

15

Scheduler Activations

• “Scheduler activations” replace kernel threads

• A scheduler activation is like a kernel thread
– has a separate stack and processor context

– can be scheduled on a CPU

• …but different:
– If the kernel interrupts an activation, it doesn’t restart it

where it left off (like a thread)

– Instead, it restarts execution in the user-level scheduler

– User-level scheduler can then decide which thread it wants
to run on that CPU

16

171717

address
space

thread

os kernel

user-level thread library

CPU

Starting a new process

• New thread starts
executing in thread lib

• User-level sched picks
thread to run, starts it

• Can reschedule a
different user-level
thread later

sched acts
(kern threads)

181818

address
space

thread

os kernel

user-level thread library

CPU

Blocking I/O

• Thread blocked on I/O

• Kernel creates new
activation – starts in the
thread lib, and picks a
new thread to run

• When I/O finishes, old
thread doesn’t resume

• Kernel interrupts
an activation, lets
the scheduler pick
what to run

sched acts
(kern threads)

BLOCKED

Performance

• Is all that really faster than kernel-level threads?
– Not really – lots of upcalls, not especially cheap

• But what we just saw were the uncommon cases!

• When threads aren’t blocking on I/O,
it’s just user-level thread management!
– orders of magnitude faster than kernel-level threads

– and now we have an answer for the blocking I/O problem

19

The state of threading today

• Scheduler activations pretty widely used:
– Various Unixes: FreeBSD, NetBSD, Solaris, Digital UNIX

(some now defunct)

– Windows 7 User-Mode Scheduling

– Recent research on multicore Oses

• Trend back to kernel-scheduled threads
– Linux, FreeBSD

– performance getting better, and less complex

• User-level threading still popular in massively-parallel
applications

20

21

• You really want multiple threads per address space

• Kernel threads are much more efficient than
processes, but they’re still not cheap
– all operations require a kernel call and parameter validation

• User-level threads are:
– really fast/cheap

– great for common-case operations
• creation, synchronization, destruction

– can suffer in uncommon cases due to kernel obliviousness
• I/O and other blocking operations

• Scheduler activations are an answer

22

What if a thread tries to do I/O?

• Remember: I/O operations are blocking

• The kernel thread “powering” it is lost for the duration
of the I/O operation!
– The kernel thread blocks in the OS, as always

– Can’t run a different user-level thread

• Same problem w/ other blocking ops (e.g. page faults)

• Again: kernel doesn’t know there are user threads, so
doesn’t know there’s something else it could run

