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Threads

• Support concurrency/parallelism within an application
e.g. a web server that’

• Key idea:
– separate the concept of a process (address space, OS 

resources)

– … from that of a minimal “thread of control” (execution state:  
stack, stack pointer, program counter, registers)

• Threads are more lightweight, so much faster to 
create and switch between than processes

thread
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Implementing Threads

Two approaches to implementing threads:

•  Kernel threads

•  User-level threads

Today:

• quick review of kernel threads

• more about user-level threads

• scheduler activations: 
adding kernel support for better user-level threads

4



5

Kernel threads

• OS now manages threads and processes / address spaces
– all thread operations are implemented in the kernel

– OS schedules all of the threads in a system, just like processes

• Kernel threads are cheaper than processes
– less state to manage: just the processor context (PC, SP, registers)

• Switching between kernel threads
– trap into kernel

– kernel saves running thread’s processor context in TCB

– kernel picks new thread to run

– kernel loads new thread’s registers, jumps to its saved PC

• Call this 1:1 scheduling
– 1 app thread per 1 kernel scheduled entity
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address 
space

thread

Mach, NT,
Linux, …

os kernel

(thread create, destroy, 
signal, wait, etc.)

CPU

Kernel threads

All thread operations 
(creating, destroying, 
waiting) go through the 
kernel



User-level threads

• Can implement threading entirely in user space
– run many user-level threads in one kernel thread

– call this N:1 threading

• Keep separate stack & processor context for each 
thread, in user space

• User-level thread lib schedules and switches threads

• Switching between threads entails:
– library saves running thread’s processor context

– library picks a new thread to run

– library restores new thread’s context, jumps to saved PC

• Pretty much same as before, but kernel not involved!

7



88
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User-level threads
user-level

thread library

(thread create, destroy, 
signal, wait, etc.)

All thread operations 
(creating, destroying, 
waiting) are handled by 
the thread library
(not the kernel)
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User-level threads: what the kernel sees

Kernel is oblivious to 
user-level threads!



User-level vs kernel threads

• User level threads are faster
– Faster to switch between threads

• Round-trip to kernel: about 500 ns

• Switching in user space: closer to 5 ns (like a function call)

– Faster to create and destroy threads

• Some problems with user-level threads
– Can we take advantage of more than one processor?

– What if one of the threads does I/O, and blocks?

• Basic problem:  lack of information in each scheduler
– Kernel doesn’t know about user-level threads

– User-level scheduler doesn’t know about other processes
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User-level scheduling, multiprocessor style

• If all user-level threads run in one kernel thread, 
only one can run at a time! 

• Most machines have more than 1 CPU core now…

• Solution: use more than one kernel thread!
1 kernel thread per processor (N:M threading)

• User-level scheduler in each kernel thread chooses 
which user-level thread to run

• Kernel schedules the kernel-level threads, but is still 
oblivious to what's going on at user level

11
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address 
space

thread

os kernel

user-level
thread library
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Multiple kernel threads “powering”
each address space
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address 
space

user-level
thread

os kernel

user-level thread library

CPU

What if a thread tries to do I/O?

• The kernel thread 
“powering” it is lost 
for the duration of the 
I/O operation!

• Even if other user-level 
threads are ready, can’t 
run them!

• Kernel doesn’t know 
there’s anything else 
ready to run

• Same problem with 
other blocking ops 
(e.g. page faults)

kernel thread
BLOCKED



Scheduler Activations

• Support for user-level threads without these problems

• Basic idea:
– let the kernel scheduler and the user-level scheduler 

coordinate with each other

– involves communication from user-level to OS and back

• From UW: [Anderson, Bershad, ‘92]

• Lots of impact on practical systems (more info later)
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Scheduler Activations: 2-way communication

• OS and user-level schedulers give each other hints

• User-level scheduler tells the kernel what it needs
– request more CPUs (might not get them!) or release them

• Kernel calls user-level scheduler to notify it of events
– more/fewer CPUs available to process

– thread blocked on I/O, or unblocked when I/O finished

• Kernel to user-space communication: upcall
– A bit unusual: usually user-space makes syscalls to kernel!

– But this is also how signals work, and like an interrupt
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Scheduler Activations

• “Scheduler activations” replace kernel threads

• A scheduler activation is like a kernel thread
– has a separate stack and processor context

– can be scheduled on a CPU

• …but different:
– If the kernel interrupts an activation, it doesn’t restart it 

where it left off (like a thread)

– Instead, it restarts execution in the user-level scheduler

– User-level scheduler can then decide which thread it wants 
to run on that CPU

16
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Starting a new process

• New thread starts 
executing in thread lib

• User-level sched picks 
thread to run, starts it

• Can reschedule a 
different user-level 
thread later

sched acts
(kern threads)
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Blocking I/O

• Thread blocked on I/O

• Kernel creates new
activation – starts in the 
thread lib, and picks a 
new thread to run

• When I/O finishes, old 
thread doesn’t resume

• Kernel interrupts 
an activation, lets 
the scheduler pick 
what to run

sched acts
(kern threads)

BLOCKED



Performance

• Is all that really faster than kernel-level threads?
– Not really – lots of upcalls, not especially cheap

• But what we just saw were the uncommon cases!

• When threads aren’t blocking on I/O,
it’s just user-level thread management!
– orders of magnitude faster than kernel-level threads

– and now we have an answer for the blocking I/O problem
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The state of threading today

• Scheduler activations pretty widely used:
– Various Unixes: FreeBSD, NetBSD, Solaris, Digital UNIX 

(some now defunct)

– Windows 7 User-Mode Scheduling

– Recent research on multicore Oses

• Trend back to kernel-scheduled threads
– Linux, FreeBSD

– performance getting better, and less complex

• User-level threading still popular in massively-parallel 
applications
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• You really want multiple threads per address space

• Kernel threads are much more efficient than 
processes, but they’re still not cheap
– all operations require a kernel call and parameter validation

• User-level threads are:
– really fast/cheap

– great for common-case operations
• creation, synchronization, destruction

– can suffer in uncommon cases due to kernel obliviousness
• I/O and other blocking operations

• Scheduler activations are an answer
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What if a thread tries to do I/O?

• Remember: I/O operations are blocking

• The kernel thread “powering” it is lost for the duration 
of the I/O operation!
– The kernel thread blocks in the OS, as always

– Can’t run a different user-level thread

• Same problem w/ other blocking ops (e.g. page faults)

• Again: kernel doesn’t know there are user threads, so 
doesn’t know there’s something else it could run


